Isogeometric analysis using manifold-based smooth basis functions
نویسندگان
چکیده
We present an isogeometric analysis technique that builds on manifold-based smooth basis functions for geometric modelling and analysis. Manifold-based surface construction techniques are well known in geometric modelling and a number of variants exist. Common to all is the concept of constructing a smooth surface by blending together overlapping patches (or, charts), as in differential geometry description of manifolds. Each patch on the surface has a corresponding planar patch with a smooth one-to-one mapping onto the surface. In our implementation, manifold techniques are combined with conformal parameterisations and the partition-of-unity method for deriving smooth basis functions on unstructured quadrilateral meshes. Each vertex and its adjacent elements on the surface control mesh have a corresponding planar patch of elements. The star-shaped planar patch with congruent wedge-shaped elements is smoothly parameterised with copies of a conformally mapped unit square. The conformal maps can be easily inverted in order to compute the transition functions between the different planar patches that have an overlap on the surface. On the collection of star-shaped planar patches the partition of unity method is used for approximation. The smooth partition of unity, or blending functions, are assembled from tensor-product b-spline segments defined on a unit square. On each patch a polynomial with a prescribed degree is used as a local approximant. In order to obtain a mesh-based approximation scheme the coefficients of the local approximants are expressed in dependence of vertex coefficients. This yields a basis function for each vertex of the mesh which is smooth and non-zero over a vertex and its adjacent elements. Our numerical simulations indicate the optimal convergence of the resulting approximation scheme for Poisson problems and near optimal convergence for thin-plate and thin-shell problems discretised with structured and unstructured quadrilateral meshes.
منابع مشابه
Isogeometric Analysis with Geometrically Continuous Functions on Planar Multi-Patch Geometries
We generate a basis of the space of bicubic and biquartic C-smooth geometrically continuous isogeometric functions on bilinear multi-patch domains Ω ⊂ R. The basis functions are obtained by suitably combining C-smooth geometrically continuous isogeometric functions on bilinearly parameterized two-patch domains (cf. [16]). They are described by simple explicit formulas for their spline coefficie...
متن کاملNURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics
An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...
متن کاملIMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS IN ISOGEOMETRIC ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD
NURBS-based isogeometric analysis (IGA) has currently been applied as a new numerical method in a considerable range of engineering problems. Due to non-interpolatory characteristic of NURBS basis functions, the properties of Kronecker Delta are not satisfied in IGA, and as a consequence, the imposition of essential boundary condition needs special treatment. The main contribution of this study...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملDimension and basis construction for C2-smooth isogeometric spline spaces over bilinear-like G2 two-patch parameterizations
A particular class of planar two-patch geometries, called bilinear-like G two-patch geometries, is introduced. This class includes the subclass of all bilinear two-patch parameterizations and possesses similar connectivity functions along the patch interface. The space of C-smooth isogeometric functions over these specific two-patch geometries is investigated. The study is based on the equivale...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.00423 شماره
صفحات -
تاریخ انتشار 2016